2(2n+3)=(4n^2-6n+9)

Simple and best practice solution for 2(2n+3)=(4n^2-6n+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2n+3)=(4n^2-6n+9) equation:



2(2n+3)=(4n^2-6n+9)
We move all terms to the left:
2(2n+3)-((4n^2-6n+9))=0
We multiply parentheses
4n-((4n^2-6n+9))+6=0
We calculate terms in parentheses: -((4n^2-6n+9)), so:
(4n^2-6n+9)
We get rid of parentheses
4n^2-6n+9
Back to the equation:
-(4n^2-6n+9)
We get rid of parentheses
-4n^2+4n+6n-9+6=0
We add all the numbers together, and all the variables
-4n^2+10n-3=0
a = -4; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·(-4)·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*-4}=\frac{-10-2\sqrt{13}}{-8} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*-4}=\frac{-10+2\sqrt{13}}{-8} $

See similar equations:

| 7x-40=-33x | | -5y+6=9y+30 | | 3(2n-1)=(4n^2+2n+1) | | 8x-3=-10x+5 | | 3/4x+2=4/3x+1/3 | | (y/3)-y=2 | | 160t−16t^2=0 | | -25p–2=48 | | -7=8-50=x | | 8x-8+10x-20+5x+1=180 | | x=x+5-11 | | -5a+4a=27 | | 15x=66 | | 5-(x-4)=15 | | |x+4|+9=6 | | x=9/5+32 | | 2X+5+3x+4=5x+9 | | 4^2x+9(4^x)+14=0 | | 3t^2-7t+21=0 | | 3t^2-7t+21=- | | 4c2+5=32 | | 6÷2x-2=3÷15 | | (3x+45=180 | | 6/2x-2=3/15 | | 8y+3y=49 | | k/35=4 | | 1/y=1/2-1/3 | | 4r+12/8=4r-12/4 | | -4r(r+6)=-79 | | X×(x+1)=2970X | | X×(x+1)=2970 | | 9=(8)n |

Equations solver categories